ASSIGNMENT SET - I

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

B.Sc Hon.(CBCS)

Mathematics: Semester-V

Paper Code: C12T

[Group Theory-2]

Answer all the questions

Unit-1

- 1. Define the terms automorphism and inner automorphism for a group. Show that the inner automorphism of group G form a normal subgroup of the automorphisim group Aut(G). 2+4
- 2. Suppose that φ is an isomorphism from a group G onto a group \overline{G} . Then prove that $\Phi(Z(G)) = Z(\overline{G})$. 3
- 3. Let G be a group, then show that $f: G \to G$ defined by $f(x) = x^{-1}$ is an automorphism of G iff G is abelian.
- 4. Prove that every characteristic subgroup of G is normal subgroup.2
- 5. Prove that the centre Z=Z(G) of G is a characteristic subgroup. 3

Unit-II

1. Let $G = Z_{10} \times Z_{10}$, then show that G contains exactly 24 elements of order5 and contains exactly 24 elements of order 10. 2+2

- 2. Let G be a group of order 77. Then show that centre of G, Z(G) is isomorphic to Z_{77} . 3
- 3. Find all abelian groups up to isomorphism of order 360. 2
- 4. Let p be prime and m, a positive integer such that p^m divides o(G). Then there exist a subgroup H of G such that $o(H) = p^m$.

Unit-III

- 1. Prove that the only group of order 255 is Z_{255} .
- Let G be a group of order pqr, pp < q < r being prime. Prove that
 (i) Sylow r subgroup is normal in G.
- (ii) G has a normal subgroup of order qr.
- (iii) If q does not divide (r-1) then Sylow q-subgroup is normal.
- 3. Show that there is no simple group of order 216.
- 4. Let o(G)=30. Show that.
 - (i) Either Sylow 3-subgroup or sylow 5-subgroup is normal in G.
 - (ii) G has a normal subgroup of order 15.
 - (iii) Both sylow 3-subgroup and sylow 5-subgroup are normal in G.

Unit-IV

Let G be a finite group acting on a finite set S. Let x₁, x₂, ..., x_n ∈S be such that Gx_i ≠ {x_i} for any i=1,2,3,...,n. then
 o(S) = o(F_s) + ∑ⁿ_{i=1}[G: Gx_i]

where $[G: Gx_i]$ denotes the index of Gx_i in G.

2. Let G be a non abelian group of order p^3 . Determine o(Z(G)) and k= number of conjugate classes of G.

- 3. Let $A = \{1,2,3\}$ and $G = S_3$. Define $*: G \times A \to A$ such that $\sigma * a = \sigma(a)$. Show that * is a group action and find all the stabilizers and orbits. Is the action transitive?
- 4. Let G be group and Z(G) be the center of G. Then show that $\frac{G}{Z(G)} \cong I(G)$ where I(G) is the set of all inner automorphism of G.